Finding Metric Structure in Information Theoretic Clustering
نویسندگان
چکیده
We study the problem of clustering discrete probability distributions with respect to the Kullback-Leibler (KL) divergence. This problem arises naturally in many applications. Our goal is to pick k distributions as “representatives” such that the average or maximum KLdivergence between an input distribution and the closest representative distribution is minimized. Unfortunately, no polynomial-time algorithms with worst-case performance guarantees are known for either of these problems. The analogous problems for l1, l2 and l 2 (i.e., k-center, k-median and k-means) have been extensively studied and efficient algorithms with good approximation guarantees are known. However, these algorithms rely crucially on the (geo-)metric properties of these metrics and do not apply to KL-divergence. In this paper, our contribution is to find a “relaxed” metricstructure for KL-divergence. In doing so, we provide the first polynomial-time algorithm for clustering using KL-divergences with provable guarantees for general inputs.
منابع مشابه
یادگیری نیمه نظارتی کرنل مرکب با استفاده از تکنیکهای یادگیری معیار فاصله
Distance metric has a key role in many machine learning and computer vision algorithms so that choosing an appropriate distance metric has a direct effect on the performance of such algorithms. Recently, distance metric learning using labeled data or other available supervisory information has become a very active research area in machine learning applications. Studies in this area have shown t...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملNGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملAn Efficient Approach Generating Optimized Clusters for Theoretic Clustering Using Data Mining
The aim of the data mining process is to extract information from a large data set and transform it into an understandable structure for further use. Data mining is the process of finding anomalies, patterns and correlations within large data sets to predict outcomes. Using a broad range of techniques, you can use this information to increase revenues, cut costs, improve customer relationships,...
متن کاملInformation Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance
Information theoretic measures form a fundamental class of measures for comparing clusterings, and have recently received increasing interest. Nevertheless, a number of questions concerning their properties and inter-relationships remain unresolved. In this paper, we perform an organized study of information theoretic measures for clustering comparison, including several existing popular measur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008